DETAILED SYLLABUS

TOPICS/CONTENTS/NOTES

1. MEASUREMENTS AND UNITS

(a)Length area and volume:

Metre rule, Venier calipers

Micrometer Screw-guage

(b)Mass

(i) unit of mass

(ii) use of simple beam balance

© Time

(i) unit of time

(ii) time-measuring devices

(d) Fundamental physical quantities

(e)Derived physical quantities and their units

(i) Combinations of fundamental quantities and determination of

their units

(f) Dimensions

(i) definition of dimensions

(ii) simple examples

(g)Limitations of experimental measurements

(ii) accuracy of measuring instruments

(iii) simple estimation of errors.

(iv) significant figures.

(v) standard form.

OBJECTIVES

Candidates should be able to:

i. identify the units of length area and volume;

ii. use different measuring instruments;

iii. determine the lengths, surface areas and volume of regular and irregular bodies;

iv. identify the unit of mass;

v. use simple beam balance, e.g Buchart’s balance and chemical balance;

vi. identify the unit of time;

vii. use different time-measuring devices;

viii. relate the fundamental physical quantities to their units;

ix. deduce the units of derived physical quantities;

x. Determine the dimensions of physical quantities;

xi. use the dimensions to determine the units of physical quantities;

xii. test the homogeneity of an equation;

xiii. determine the accuracy of measuring instruments:

xiv. estimate simple errors;

xv. express measurements in standard form.

TOPICS/CONTENTS/NOTES

2. Scalars and Vectors

(i) definition of scalar and vector quantities

(ii) examples of scalar and vector quantities

(iii) relative velocity

(iv) resolution of vectors into two Perpendicular directions including graphical methods of solution.

OBJECTIVES

Candidates should be able to:

i. distinguish between scalar and vector quantities;

ii. give examples of scalar and vector quantities;

iii. determine the resultant of two or more vectors;

iv. determine relative velocity;

v. resolve vectors into two perpendicular components;

vi. use graphical methods to solve vector problems;

TOPICS/CONTENTS/NOTES

3. Motion

(a) Types of motion: translational, oscillatory, rotational, spin and random

(b) linear motion

(i) speed, velocity and aceleration

(ii)equations of uniformly accelerated motion

(iii) motion under gravity

(iv) distance-time graph and velocity time graph

(v) instantaneous velocity and acceleration.

© Projectiles:

(i) calculation of range, maximum height and time of flight

(ii)applications of projectile motion

(d) Newton’s laws of motion: .

(i) inertia, mass and force

(ii) relationship between mass and acceleration

(iii) impulse and momentum

(iv) conservation of linear momentum (Coefficient of restitution not necessary)

(e) Motion in a circle:

(i) angular velocity and angular acceleration

(ii)centripetal and centrifugal

(f.) Simple Harmonic Motion (S.H.M.):

definition and explanation of simple harmonic motion

examples of systems that excutes S.H.M

period frequency and amplitude of S.H.M.

velocity and acceleration of S.H.M

energy change in S.H.M

OBJECTIVES

Candidates should be able to :

i. identify different types of motion ;

ii. differentiate between speed, velocity and acceleration;

iii. deduce equations of uniformly accelerated motion;

iv. solve problems of motion under gravity;

v. interpret distance-time graph and velocity-time graph;

vi. compute instantaneous velocity and acceleration

vii. establish expressions for the range, maximum height and time of flight of projectiles;

viii. solve problems involving projectile motion;

ix. interpret Newton’s laws of motion;

x. compare inertia, mass and force;

xi. deduce the relationship between mass and acceleration;

xii. solve numerical problems involving impulse and momentum;

xiii. interpret the law of conservation of linear momentum;

xiv. establish expression for angular velocity, angular

acceleration and centripetal force; applications

xv. solve numerical problems involving motion in a circle;

xvi. establish the relationship between period and frequency;

xvii. analyse the energy changes occurring during S.H.M

TOPICS/CONTENTS/NOTES

4. Gravitational field

(i.) Newton’s Law of universal gravitation

(ii.) gravitational potential

(iii.) conservative and non conservative fields

acceleration due to gravity [g=GM/R]

variation of g on the earth’s surface

distinction between mass and weight

escape velocity

parking orbit and weightlessness

Candidate should be able to:

Identify the expressions for gravitational force between two bodies

Apply Newton’s law of universal gravitation;

Give examples of conservative and non-conservative and non-conservation fileds;

deduce the expression for gravitational field potential.

identify the causes of variation of g on the earth’s surface;

differentiate between mass amd weight

determine escape velocity

TOPICS/CONTENTS/NOTES

5. Equilibrium of Forces

equilibrium of a particular

equilibrium of coplanar forces

triangles and polygon of forces

Lami’s theorem

Principles of moments

Momemt of a force

Simple treatment and moment of a couple (torgue)

application

conditions for equilibrium of rigid bodies under the action of parallel and non –parallel forces

resolution and composition of forces in two perpendicular directions, resultant and equilibrant

center of gravity and stability

Stable, unstable and neutral equilibrate.

OBJECTIVES

Candidate must be able to:

i.apply the conditions for the equilibrium of coplanar foirce to solve problems;

ii.use triangle and polygon laws of forces to solve equilibrium problems

iii.use Lami’s theorem to solve problems

iv.analyse the principle of moment of a force

v.determine moment of a force and couple

vi.describe some applications of moment of a force and couple.

vii.apply the conditions for the equilibrium of rigid bodies to solve problems

viii.resolve forces into two perpendicular directions;

ix.determine the resultant and equilibrium of forces

x.differentiate between stable, unstable and neutral equilibrium

TOPICS/CONTENTS/NOTES

6. Work Energy and Power

(i) definition of work, energy and power

(ii) forms of energy

(iii) conservation of energy

(iv) qualitative treatment between different forms of energy

(v) interpretation of area under the force-distance curve

OBJECTIVES

Candidates should be able to:

i differentiate between work, energy and power;

ii. compare different forms of energy, giving examples;

iii. apply the principle of conservation of energy;

iv. examine the transformation between different forms of energy;.

v. interpret the area under the force -distance curve.

TOPICS/CONTENTS/NOTES

7.Friction

(i) static and dynamic friction

(ii) coefficient of limiting friction and its determination.

(iii) advantages and disadvantages of friction

(iv) reduction of friction qualitative treatment of viscosity and terminal viscosity.

stoke’s law

OBJECTIVES

Candidates should be able to:

i. differentiate between static and dynamic friction

ii. determine the coefficient of limiting friction;

iii. compare the advantages and disadvantage of friction;

iv. suggest ways by which friction can be reduced;

v. analyse factors that affect viscosity and terminal velocity;

vi. apply stoke’s law.

TOPICS/CONTENTS/NOTES

8.Simple Machines

(i) definition of machine

(ii) types of machines

(iii) mechanical advantage,velocity ratio and efficiency of

machines

OBJECTIVES

Candidates should be able to:

i. identify different types of machines;

ii. solve problems involving simple machines.

TOPICS/CONTENTS/NOTES

9.Elasticity

. (i) elastic limit, yield point, breaking point, Hooke’s law and Young’s modulus

(ii) the spring balance as a device for measuring force

(iii) work done in springs and elastic Strings

OBJECTIVES

Candidates should be able to:

i. interpret force-extension curves; .

ii. interpret Hooke’s law and Young’s modulus of a material; ,

iii use spring balance to measure force;

iv. determine the work done in spring and elastic strings

TOPICS/CONTENTS/NOTES

10.Pressure

(a) Atmospheric Pressure

(i) definition of atmospheric pressure

(ii) units of pressure (S.I) units

(iii) measurement of pressure

(iv) simple mercury.baromcter,aneroid barometer and manometer.

(v) variation of pressure with height

(vi) the use of barometer as an altimeter.

(b) Pressure in liquids

(i) the relationship between pressure, depth and density (P = pgh)

(ii) transmission of pressure in liquids (Pascal’s Principle)

(iii) application

OBJECTIVES

Candidates should be able to:

i. recognize the S.I units of pressure;

ii. identify pressure measuring instruments;

iii. relate the variation of pressure to height;

iv. use a barometer as an altimeter.

v. determine the relationship between pressure, depth and density;

vi. apply the principle of transmission of pressure in liquids to solve problems;

vii. determine the application of pressure in liquid;

TOPICS/CONTENTS/NOTES

11.Liquids At Rest

(i) determination of density of solid and liquids

(ii) definition of relative density

(iii)upthrust on a body immersed in a liquid

(iv)Archimede’s principle and law of floatation and applications, e.g. ships and hydrometers.

OBJECTIVES

Candidates should be able to:

i. distinguish between density and relative density of substances;

ii. determine the upthrust on a body immersed in a liquid

iii. apply Archimedes’ principle and law of floatation to solve problems

TOPICS/CONTENTS/NOTES

12.Temperature and Its Measurement

(i) concept of temperature

(ii) thermometric properties

(iii)calibration of thermometers

(iv) temperature scales —Celsius and Kelvin.

(v) types of thermometers

(vi) conversion from one scale of temperature to another

OBJECTIVES

Candidates should be able to:

i. identify thermometric properties of materials that’are used for different thermometers;

ii. calibrate thermometers;

iii. differentiate between temperature scales e.g Clesius and Kelvin.

iv. compare the types of thermometers;

vi. convert from one scale of temperature to another.

TOPICS/CONTENTS/NOTES

13. Thermal Expansion

(a) Solids

(i) definition and determination of linear, volume and area expansivities

(ii) effects and applications, e.g. expansion in building strips and railway lines

(vi) relationship between different expansivities

(b) Liquids

(i) volume expansivity

(ii) real and apparent expansivities

(iii) determination of volume expansivity

(iv) anomalous expansion of water

OBJECTIVES

Candidates should be able to:

i. determine linear and volume expansivities;

ii. assess the effects and applications of thermal expansivities

iii. determine the relationship between different expansivities.

iv. determine volume, apparent, and real expansivities of liquids;

v. analyse the anomalous expansion of water.

TOPICS/CONTENTS/NOTES

14.Gas Laws

(i) Boyle’s law (PV = constant)

(ii) Charle’s law ( V/P = constant)

(iii) Pressure law ( P/T = constant)

(iv) Absolute zero of temperature

(v) General gas equation ( PV /T= constant)

(vi) Ideal gas equation (Pv=n RT)

OBJECTIVES

Candidates should be able to:

i. interpret the gas laws;

ii. use expression of these laws to solve numerical problems.

TOPICS/CONTENTS/NOTES

15.Quantity of Heat

(i) heat as a form of energy

(ii) definition of heat capacity and specific heat capacity of solids and liquids

(iii) determination of heat capacity and specific heat capacity of substances by simple methods e.g method of mixtures and electrical method

OBJECTIVES

Candidates should be able to:

i. differentiate between heat capacity and specific heat capacity;

ii. determine heat capacity and specific heat capacity using simple methods;

iii. examine some numerical problems.

TOPICS/CONTENTS/NOTES

16.Change of State

(i) latent heat

(ii) specific latent heats of fusion and vaporization;

(iii) melting, evaporation and boiling

(iv) the influence of pressure and of dissolved substances on boiling and melting points.

(v) application in appliances

OBJECTIVES

Candidates should be able to:

i. differentiate between latent heat and specific latent heats of fusion and vaporization;

ii. differentiate between melting, evaporation and boiling;

iii. examine the effects of pressure and of dissolved substance on boiling and melting points.

TOPICS/CONTENTS/NOTES

17.Vapours

(i) unsaturated and saturated vapours

(ii) relationship between saturated vapour pressure (S.V.P) and boiling

(iii) determination of S.V.P by barometer tube method

(iv) formation of dew, mist, fog, and rain

(v) study of dew point, humidity and relative humidity

(vi) hygrometry; estimation of the humidity of the atmosphere using wet and dry bulb hydrometers.

OBJECTIVES

Candidates should be able to:

i. distinguish between saturated and unsaturated vapours;

ii. relate saturated vapour pressure to boiling point;

iii. determine S.V.P by barometer tube method

iv. differentiate between dew point, humidity and relative humidity;

v estimate the humidity of the atmosphere using wet and dry bulb hydrometers.

TOPICS/CONTENTS/NOTES

18.Structure of Matter and Kinetic Theory

(a) Molecular nature of matter

(i) atoms and molecules

(ii) molecular theory: explanation of Brownian motion, diffusion, surface tension, capillarity, adhesion, cohesion and angles of contact

(iii) examples and applications.

(b)Kinetic Theory

(i) assumptions of the kinetic theory

(ii) using the theory to explain the pressure exerted by gas, Boyle’s

OBJECTIVES

Candidates should be able to:

i. differentiate between atoms and molecules;

ii. use molecular theory to explain Brownian motion, diffusion, surface, tension, capillarity, adhesion, cohesion and angle of contact;

iii. examine the assumptions of kinetic theory;

interpret kinetic theory, the pressure exerted by gases Boyle’s law, Charles law melting, boiling vaporization, change in temperature, evaporation, etc

TOPICS/CONTENTS/NOTES

19. Heat Transfer

Condition, convetion and radiation as modes of heat transfer

Temperature gradient, thermal conductivity and heat flux

Effect of the nature of the surface on the energy radiated and absorbed by it.

The conductivites of common materials

The thrmos flask Land and sea breeze

OBJECTIVES

Candidates should be able to:

i. differentiate between conduction , convention and radiation as modes of heart transfer;

ii. determine temperature gradient, thermal conductivity and heat flux

iii. assess the effect of the nature of the surface on the energy radiated and absorbed by it;

iv. compare the conductivities of commonmaterials

v. relate the component part of the working of the thermo flask;

vi. different between land and sea breeze.

TOPICS/CONTENTS/NOTES

20. Waves

Production and propagation

Wave motion

Vibrating systems as source of waves

Waves as mode of energy transfer

distinction between particle motion and wave motion

relationship between frequency wavelength and wave velocity (v=f?)

phase difference

progressive wave equation e.g y=A sin (2 p(vt+x))/?

Classification

Types of waves; mechanical and electromagnetic waves

Longitudinal and transverse waves

Stationery and progressive waves

Examples of waves from springs, ropes, stretched strings and the ripple tank.

Chracteristics/Properties

Reflection, refractions, diffraction and plane Polarization

Superposition of waves e.g interference

OBJECTIVES

Candidate should be a ble to

i. Interpret wave motion

ii. Identify vibrating systems as sources of waves

iii. Use waves as a mode of energy transfer;

iv. Distinguish between particle motion and wave motion

v. Relate frequency and wave length to wave velocity

vi. Determine phase difference

vii. Use the progressive wave equation to compute basic wave parameters

viii. Differentiate between mechanical and electromagnetic waves.

ix. Differentiate between longitudinal and transverse waves.

x. Distinguish between stationary and progressive waves

xi. Indicate the example of waves generated from springs, ropes, stretched strings and the ripple tank;

xii. Differenctiate between reflection, refraction, diffraction and plane polarization of waves.

xiii. Analyse the principle of superposition of waves.

TOPICS/CONTENTS/NOTES

21. Propagation of sound waves

the necessity for a material medium

speed of sound in solids, liquids and air;

reflection of sound; echoes, reverberation and their applications

disadvantages of echoes and reverberations

OBJECTIVES

Candidate should be able to:

i. determine the need for a metrial medium in the propagation of sound waves

ii. compare the speed of sound in solids liquid and air

iii. relate the effects of temperature and pressure to the speed of sound in air

solve problem on echoes, reverberation

iv.compare the disadvantages and echoes

TOPICS/CONTENTS/NOTES

22. Characteristics of sound waves

(i) noise and musical notes

(ii) quality, pitch, intensity application and loudness and their application to musical instruments

(iii)simple treatment of overtones produced by vibrating strings and their coloumns [F=L/2Lv(T/M)]

acoustic examples of resonance

frequency of a note emitted by air columns in closed and open pipes in relation to their lengths.

TOPICS/CONTENTS/NOTES

23. Light Energy

Source of Light:

Natural and artificial source of light

Luminous and non-luminous objects

Propagation of light

Speed frequency and wavelength of light

(ii) Formation of shadows and eclipse

The pin-hole camera

OBJECTIVES

Candidate should be able to:

i. Compare the natural and artificial sources of light

ii.Differentiate between luminous and non luminous object

iii. Relate the speed, frequency and wavelength of light.

iv. Interpret the formation of shadows and eclipse

v. Solve problems using the principle of operation of a pin-hole camera

TOPICS/CONTENTS/NOTES

24. Reflection of light a Plane and curved surfaces

(i) laws of reflection

(ii) application of reflection of light

(iii) Formation of images by plane concave and convex mirrors and ray diagrams

(iv) use of the mirror formula

[1/f=(1/u)+(1/v)

(v) Linear magnification

OBEJCTIVES

Candidates should be able to

i. Interpret the laws of reflection

ii. Illustrate the formation of images by plane, concave and convex mirros:

iii. Apply the mirror formula to solve optical problems;

iv. Determine the linear magnification

v. Apply the laws of reflection of light to the working of periscope, kaleidoscope and the sextant.

TOPICS/CONTENTS/NOTES

25. Refraction of light through

(a)Plane and Curved Surface

(i) explanation of refraction in terms of velocity of light in the media

(ii) laws of refraction

(iii) definition of refraction index of a medium

(iv) determination of refraction index of glass and liquid using Snell’s law

(v) real and apparent depth and lateral displacement

(vI) critical angle and total internal reflection

(b) Glass Prism

Use of the minimum deviation formula

U=(sin((A+D)/2))/sin(A/2)

Type of lenses

Use of formula 1/f = (1/u) + (1/v)

magnification

OBJECTIVES

Candidates should be able to:

i. interpret the laws of refelction ;

ii. determine the refractive index of glass and liquid using Snell’s law;

iii.determine the refractive index using the principle of real and apparent depth

iv. determine the conditions necessary for total internal refelction;

v. examine the use of periscope, prism, binoculars, optical fibre.

vi.Apply the principles of total internal reflection to the formula of mirage

vii. Use of lens formula and ray diagrams to solve optical numerical problems

viii.Determine the magnification of an image

ix.Calculate the refractive index of a glass prism suing minimum deviation formula

TOPIC/CONTENT/NOTEs

26. Optical Instruments

(i) the principles of miscroscopes, telescopes, projections, cameras and the human eye (physiological details of the eye are not required)

(ii) power of a lens

(iii) Angular magnification

(iv) site defects and their corrections

OBJECTIVES

Candidates should be able to

i. apply the principles of operation of optical instruments to solve problems

ii.distinguish between the human eye and the cameras

iii. calculate the power of a lens

iv. determine the angular magnification of optical instruments

v. determine the near and far points

vi. detect sight defects and their corrections.

TOPICS/CONTENTS/NOTES

27 (a) dispersion of light and colours

Dispersion of white light by a triangular prism

Production of pure spectrum

Colour mixing by addition and subtraction

Colour of objects abd colour filters.

(b) electromagnetic spectrum

(i) description of sources and uses of various types of radiation

OBJECTIVES

Candidates should be able to

i. Relate the expression for gravitational force between two bodies

ii. Apply Newton’s laws of universal gravitation

iii. Identify primary colours and obtain secondary colour by mixing.

iv. Deduces why objects have colours

v. Analyse colours using colour filters

vi. Analayse the electromagnetic spectrum in relation to their wavelengths, sources, detection and uses.

TOPICS/CONTENTS/NOTES

28. Electrostatics

(i) existence of ositive and negative charges in matter

(ii) charging a body by friction, contact and induction

(iii) electroscope

(iv) Coulomb’s inverse square law electric field and potential

Electric field and potential

OBJECTIVES

Candidate should be able to:

i. Identify charges

ii. Examine uses of an electronscope

iii.apply coulomb’s square law of electrostatic to solve problems

iv. deduce expression for electric field and potential

v. identify electric field flux patterns of isolated and interacting charges

vi. analyze the distribution of charges on a conductor and how it is used I lightening conductors.

Conductor and how it is used in lightening conductors

TOPICS/CONTENTS/NOTES

29. Capacitors

Functions of capacitors

Parallel plate capacitors

Capacitance of a capacitors

The relationship between capacitance, area separation of plates and medium between the plates [C=3A/d]

Capacitors in series and parallel

Energy stored in a capacitor

OBJECTIVES

Candidate should be able to:

i. determine uses of capacitors

ii. analyse parallel plate capacitors

iii. determine the capacitance of a capacitor

iv. analyse the factors that affect the capacitance of a capacitor

v. solve problems involving the arrangement of capacitor

vi. determine the energy stored in capacitors

TOPICS/CONTENTS/NOTES

30. Electric Cells

(i) simple voltaic cell and its defects;

(ii) Daniel cell, Leclanche cell (wet and dry)

(iii) lead acid accumulator and Nickel Iron (Nife) Lithium Ion and Mercury cadmium

(iv) maintenance of cells and batteries (detail treatment of the chemistry of a cell is not required

(v) arrangement of cell

OBJECTIVES

Candidate should be able to:

i. identify the defects of the simple voltaic cell and their corrected;

ii. compare different types of cells including solar cell

iii. compare the advantages of lead-acid and Nikel iron accuulator

iv. citance of a capacitor

v. solve problems involving series and parallel combination of cells

TOPICS/CONTENTS/NOTES

31. Current Electricity

(i) electromagnetic force (emf), potential difference (p.d.), current, internal resistance of a cell and lost volt

(ii) Ohm’s law

(iii) measurement of resistance

(iv) meter bridge

(v) resistance in series and in parallel and their combination

the potentiometer method of measuring emf, current and internal resistance of a cell.

OBJECTIVES

Candidate should be able to:

i. differentiate between emf p.d current and internal resistance of a cell.

ii. apply ohm’s law to solve problems

iii. Use meter bridge to calculate resistance

iv. Compute effective total resistance of both parallel and series arrangement of resistors

v. determine the resistivity and the conductivity of a conductor

vi. measure emf current and internal resistance of a cell using the potentiometer.

32.Electrical Energy and Power

(i) concepts of electrical energy and power

(ii) commercial unit of electric energy and power

(iii) electric power transmission

(iv) heating effects of electric current.

OBJECTIVES

Candidates should be able to:

i. apply the expressions of electrical energy and power to solve problems;

ii. analyse how power is transmitted from the power station to the consumer;

iii. identify the heating effects, of current and its uses.

TOPICS/CONTENTS/NOTES

33.Magnets and Magnetic Fields

(i) natural and artificial magnets

(ii) magnetic properties of soft iron and steel

(iii) methods of making magnets and demagnetization

(iv) concept of magnetic field

(v) magnetic field of a permanent magnet

(vi) magnetic field round a straight current carrying conductor, circular wire and solenoid

(vii) properties of the earth’s magnetic Meld; north and south poles, magnetic meridian and angle of dip and declination

(viii) flux and flux density

(ix) variation of magnetic field intensity over the earth’s surface

(x) applications: earth’s magnetic field in navigation and mineral exploration.

OBJECTIVES

Candidates should be able to:

i. give examples of natural and artificial magnets

ii. differentiate between the magnetic properties of soft iron and steel;

iii. identify the various methods of making magnets and demagnetizing magnets;

iv. describe how to keep a magnet from losing its magnetism;

v. determine the flux pattern exhibited when two magnets are placed together pole to pole;

vi. determine the flux of a current carrying conductor, circular wire and solenoid including the polarity of the solenoid;

vii. determine the flux pattern of magnetic placed in the earth’s magnetic fields;

viii. identify the magnetic elements of the earth’s flux;

ix. determine the variation of earth’s magnetic field on the earth’s surface;

x. examine the applications of the earth’s magnetic field.

TOPICS/CONTENTS/NOTES

34.Force on a Current-Carrying Conductor in a Magnetic Field

quantitative treatment of force between two parallel current carrying conductors.

Force on a charge moving in a magnetic field

The dc motor

Electromagnets

Carbon microphone

Moving coil and moving iron instruments

Conversion of galvanometers to ammeters and voltmeter using shunts and multipliers

OBJECTIVES

Candidates should be able to:

i. determine the direction of force on a current carrying conductor using Fleming’s left-hand rule:

ii. interpret the attractive and repulsive forces between two parallel current carrying conductors using diagrams:

iii. determine the relationship between the force, magnetif field strength, velocity and the angle though which the charge enters the field

iv. interpret the working of the d. c. motor

v. analyse the principle of electromagnets give examples of its application

vi.compare moving iron and moving coil instruments

vii. converts a galvanometer into an ammeter or a voltmeter

TOPICS/CONTENTS/NOTES

35. (a) Electromagnetic Induction

Faraday’s law of electromagnetic induction

Factors affecting induced emf

Lenz’s law as an illustration of the principle of conservation of energy

A.c and d.c generators

Transformers

The induction coil

(b) Inductance

i. Explanation of inductance’

ii. Unit of inductor

iii. Energy stored ina n inductance

E= 1I2 L/2

iv. Application/uses of inductors

c.Eddy Current

i. reduction of eddy current

ii. application of eddy current

OBJECTIVES

Candidates should be able to:

i. interpret the laws of electromagnetic induction

ii. identify the factors affecting induced emf;

iii. recognize how Lenz’ law illustrates the principle of conservation of energy

iv. interpret the diagrammatic setup of A.C. generators;

v. indentify the types of transformer

vi. examine principles of operation of transformers

vii. assess the functions of an induction coil

viii. draw some conclusions from the principles of operation of an induction coil

ix. interpret the inductance of an inductor

x. recognize units of inductance of an inductor

xi. calculate the effective total inductance in series and parallel arrangement.

xii. deduce the expression for the energy stored in an inductor;

xiii. examine the applications of inductors

xiv. describe the method by which eddy current losses can be reduced.

xv. determine the ways by which eddy current can be used.

TOPICS/CONTENTS/NOTES

36. Simple A.C. Circuits

i. Explanation of a.c current and voltage

ii. Peak and r.m.s values

iii. A.C. sources connected to a resistor

iv. A.C. sources connected to a capacitor-capacitive reactance

v. A.C. sources connected to an inductor-inductive reactance

vi. Series R-L-C circuits

vii. Vector diagram

viii. Reactance and impedance of alternative quantities

ix. Effective voltage in an R-L-C circuits

x. Resonance and resonance frequency

[F0 =1/(2pvLC)

OBJECTIVES

Candidate should be able to

i. identify A.C. current of and d. d. voltage

ii. differentiate between the peak and r.m.s. values of a.c

iii. determine the phase difference between current and voltage

iv. nterpret series R-L-C circuit

v. analyse vector diagrams

vi. calculate the effective voltage reactance and impedance

vii. recognize the condition by which the circuit is at resonance

viii. determine the resonant frequency of R-L-C arrangement

ix. determine the instantaneous power, average power and the power factor in a circuit.

37. Conduction of Electricity through liquid

(a) liquids

(i) electrolytes and non electrolytes

(ii) concept of electrolysis

(iii) Faradays law of electroysis

(iv) application of electrolysis e.g electroplating, calibration of ammeter etc.

(b) gases

(i) discharges through gases(quantitative treatment only)

(ii) application of conduction of electricity through gases

OBJECTIVES

Candidate should be able to

i. distinguish between electrolytes and non-electrolytes

ii. analyse the processes of electrolytes

iii. apply faraday’s laws of electrolysis to solve problems

iv. analyse discharge through gases

v. determine some applications/uses of conduction of electricity through gases.

TOPIC/COMMENT/NOTES

38. Elementary Modern Physics

(i) models of the atom and their limitations

(ii) elementary structure of the atom

(iii) energy level and spectra

(iv) thermionic and photoelectric emissions

(v) einstein’s equation and stopping potential

(vi) applications of thermionic emissions and photoelectric effects

(vii) simple method of production of x-rays

(viii) properties and applications of alpha, beta and gamma rays.

(xiii) halflife and decay constant

(xiv) simple ideas of production energy by fission

(xv) binding energy, mass defect and Eintein’s Energy equation[?E=?Mc^2

(xvi) wave-particle paradox (duality of matter)

(xvii) electron diffraction

(xviii) the uncertainty principle

OBJECTIVES

Candidate should be able to

i. identify the models of the atom and write their limitation

ii. describe elementary structure of the atom

iii. differentiate between the energy levels and spectra of atom

iv. compare thermionic emission and photoelectric effects

v. apply Einstein’s equation to solve problems of photoelectric effect

vi. calculate the stopping potential

vii. relate some application of thermionic emission and photoelectric effects

viii. interpret the process involved in the production of x-rays

ix. identify come properties and application of x-rays

x. analyse elementary radioactivity.

xi. distinguish between stable and unstable nuclei

xii. Identify isotopes of an element

xiii. compare the properties of alpha beta and gamma rays

xiv. relate half life and decay constant of a radioactive element

xv. determine the binding energy, mass defect and Einsteins’s energy equation

xvi. analyse wave particle duality

xvii. Solve some numerical problems based on the uncertainty principle

TOPIC/COMMENT/NOTES

39. Introductory Electronics

(i) distinguish between metals semi conductors and insulators(elementary knowledge of band gap is required)

(ii) intrinsic and extrinsic semi conductor

(iii)uses of semiconductors and diodes in rectification and transistors in amplification.

(iv) n-type and p-type semi-conductors

(v) elementary knowledge of diode and transistors

(vi) use of semiconductors and diodes in rectification and transistors in amplification

OBJECTIVES

Candidates ’should be able to

i. differentiate between conducturs, semi conductors and insulators

ii. distinguish between intrinsic and extrinsic semiconductors

iii.distinguish between electron and hole carrier

iv. distinguish between n-type and p-type semi-conductor

vi. analyse diodes to rectification and transistor to amplification

TOPICS/CONTENTS/NOTES

1. MEASUREMENTS AND UNITS

(a)Length area and volume:

Metre rule, Venier calipers

Micrometer Screw-guage

(b)Mass

(i) unit of mass

(ii) use of simple beam balance

© Time

(i) unit of time

(ii) time-measuring devices

(d) Fundamental physical quantities

(e)Derived physical quantities and their units

(i) Combinations of fundamental quantities and determination of

their units

(f) Dimensions

(i) definition of dimensions

(ii) simple examples

(g)Limitations of experimental measurements

(ii) accuracy of measuring instruments

(iii) simple estimation of errors.

(iv) significant figures.

(v) standard form.

OBJECTIVES

Candidates should be able to:

i. identify the units of length area and volume;

ii. use different measuring instruments;

iii. determine the lengths, surface areas and volume of regular and irregular bodies;

iv. identify the unit of mass;

v. use simple beam balance, e.g Buchart’s balance and chemical balance;

vi. identify the unit of time;

vii. use different time-measuring devices;

viii. relate the fundamental physical quantities to their units;

ix. deduce the units of derived physical quantities;

x. Determine the dimensions of physical quantities;

xi. use the dimensions to determine the units of physical quantities;

xii. test the homogeneity of an equation;

xiii. determine the accuracy of measuring instruments:

xiv. estimate simple errors;

xv. express measurements in standard form.

TOPICS/CONTENTS/NOTES

2. Scalars and Vectors

(i) definition of scalar and vector quantities

(ii) examples of scalar and vector quantities

(iii) relative velocity

(iv) resolution of vectors into two Perpendicular directions including graphical methods of solution.

OBJECTIVES

Candidates should be able to:

i. distinguish between scalar and vector quantities;

ii. give examples of scalar and vector quantities;

iii. determine the resultant of two or more vectors;

iv. determine relative velocity;

v. resolve vectors into two perpendicular components;

vi. use graphical methods to solve vector problems;

TOPICS/CONTENTS/NOTES

3. Motion

(a) Types of motion: translational, oscillatory, rotational, spin and random

(b) linear motion

(i) speed, velocity and aceleration

(ii)equations of uniformly accelerated motion

(iii) motion under gravity

(iv) distance-time graph and velocity time graph

(v) instantaneous velocity and acceleration.

© Projectiles:

(i) calculation of range, maximum height and time of flight

(ii)applications of projectile motion

(d) Newton’s laws of motion: .

(i) inertia, mass and force

(ii) relationship between mass and acceleration

(iii) impulse and momentum

(iv) conservation of linear momentum (Coefficient of restitution not necessary)

(e) Motion in a circle:

(i) angular velocity and angular acceleration

(ii)centripetal and centrifugal

(f.) Simple Harmonic Motion (S.H.M.):

definition and explanation of simple harmonic motion

examples of systems that excutes S.H.M

period frequency and amplitude of S.H.M.

velocity and acceleration of S.H.M

energy change in S.H.M

OBJECTIVES

Candidates should be able to :

i. identify different types of motion ;

ii. differentiate between speed, velocity and acceleration;

iii. deduce equations of uniformly accelerated motion;

iv. solve problems of motion under gravity;

v. interpret distance-time graph and velocity-time graph;

vi. compute instantaneous velocity and acceleration

vii. establish expressions for the range, maximum height and time of flight of projectiles;

viii. solve problems involving projectile motion;

ix. interpret Newton’s laws of motion;

x. compare inertia, mass and force;

xi. deduce the relationship between mass and acceleration;

xii. solve numerical problems involving impulse and momentum;

xiii. interpret the law of conservation of linear momentum;

xiv. establish expression for angular velocity, angular

acceleration and centripetal force; applications

xv. solve numerical problems involving motion in a circle;

xvi. establish the relationship between period and frequency;

xvii. analyse the energy changes occurring during S.H.M

TOPICS/CONTENTS/NOTES

4. Gravitational field

(i.) Newton’s Law of universal gravitation

(ii.) gravitational potential

(iii.) conservative and non conservative fields

acceleration due to gravity [g=GM/R]

variation of g on the earth’s surface

distinction between mass and weight

escape velocity

parking orbit and weightlessness

Candidate should be able to:

Identify the expressions for gravitational force between two bodies

Apply Newton’s law of universal gravitation;

Give examples of conservative and non-conservative and non-conservation fileds;

deduce the expression for gravitational field potential.

identify the causes of variation of g on the earth’s surface;

differentiate between mass amd weight

determine escape velocity

TOPICS/CONTENTS/NOTES

5. Equilibrium of Forces

equilibrium of a particular

equilibrium of coplanar forces

triangles and polygon of forces

Lami’s theorem

Principles of moments

Momemt of a force

Simple treatment and moment of a couple (torgue)

application

conditions for equilibrium of rigid bodies under the action of parallel and non –parallel forces

resolution and composition of forces in two perpendicular directions, resultant and equilibrant

center of gravity and stability

Stable, unstable and neutral equilibrate.

OBJECTIVES

Candidate must be able to:

i.apply the conditions for the equilibrium of coplanar foirce to solve problems;

ii.use triangle and polygon laws of forces to solve equilibrium problems

iii.use Lami’s theorem to solve problems

iv.analyse the principle of moment of a force

v.determine moment of a force and couple

vi.describe some applications of moment of a force and couple.

vii.apply the conditions for the equilibrium of rigid bodies to solve problems

viii.resolve forces into two perpendicular directions;

ix.determine the resultant and equilibrium of forces

x.differentiate between stable, unstable and neutral equilibrium

TOPICS/CONTENTS/NOTES

6. Work Energy and Power

(i) definition of work, energy and power

(ii) forms of energy

(iii) conservation of energy

(iv) qualitative treatment between different forms of energy

(v) interpretation of area under the force-distance curve

OBJECTIVES

Candidates should be able to:

i differentiate between work, energy and power;

ii. compare different forms of energy, giving examples;

iii. apply the principle of conservation of energy;

iv. examine the transformation between different forms of energy;.

v. interpret the area under the force -distance curve.

TOPICS/CONTENTS/NOTES

7.Friction

(i) static and dynamic friction

(ii) coefficient of limiting friction and its determination.

(iii) advantages and disadvantages of friction

(iv) reduction of friction qualitative treatment of viscosity and terminal viscosity.

stoke’s law

OBJECTIVES

Candidates should be able to:

i. differentiate between static and dynamic friction

ii. determine the coefficient of limiting friction;

iii. compare the advantages and disadvantage of friction;

iv. suggest ways by which friction can be reduced;

v. analyse factors that affect viscosity and terminal velocity;

vi. apply stoke’s law.

TOPICS/CONTENTS/NOTES

8.Simple Machines

(i) definition of machine

(ii) types of machines

(iii) mechanical advantage,velocity ratio and efficiency of

machines

OBJECTIVES

Candidates should be able to:

i. identify different types of machines;

ii. solve problems involving simple machines.

TOPICS/CONTENTS/NOTES

9.Elasticity

. (i) elastic limit, yield point, breaking point, Hooke’s law and Young’s modulus

(ii) the spring balance as a device for measuring force

(iii) work done in springs and elastic Strings

OBJECTIVES

Candidates should be able to:

i. interpret force-extension curves; .

ii. interpret Hooke’s law and Young’s modulus of a material; ,

iii use spring balance to measure force;

iv. determine the work done in spring and elastic strings

TOPICS/CONTENTS/NOTES

10.Pressure

(a) Atmospheric Pressure

(i) definition of atmospheric pressure

(ii) units of pressure (S.I) units

(iii) measurement of pressure

(iv) simple mercury.baromcter,aneroid barometer and manometer.

(v) variation of pressure with height

(vi) the use of barometer as an altimeter.

(b) Pressure in liquids

(i) the relationship between pressure, depth and density (P = pgh)

(ii) transmission of pressure in liquids (Pascal’s Principle)

(iii) application

OBJECTIVES

Candidates should be able to:

i. recognize the S.I units of pressure;

ii. identify pressure measuring instruments;

iii. relate the variation of pressure to height;

iv. use a barometer as an altimeter.

v. determine the relationship between pressure, depth and density;

vi. apply the principle of transmission of pressure in liquids to solve problems;

vii. determine the application of pressure in liquid;

TOPICS/CONTENTS/NOTES

11.Liquids At Rest

(i) determination of density of solid and liquids

(ii) definition of relative density

(iii)upthrust on a body immersed in a liquid

(iv)Archimede’s principle and law of floatation and applications, e.g. ships and hydrometers.

OBJECTIVES

Candidates should be able to:

i. distinguish between density and relative density of substances;

ii. determine the upthrust on a body immersed in a liquid

iii. apply Archimedes’ principle and law of floatation to solve problems

TOPICS/CONTENTS/NOTES

12.Temperature and Its Measurement

(i) concept of temperature

(ii) thermometric properties

(iii)calibration of thermometers

(iv) temperature scales —Celsius and Kelvin.

(v) types of thermometers

(vi) conversion from one scale of temperature to another

OBJECTIVES

Candidates should be able to:

i. identify thermometric properties of materials that’are used for different thermometers;

ii. calibrate thermometers;

iii. differentiate between temperature scales e.g Clesius and Kelvin.

iv. compare the types of thermometers;

vi. convert from one scale of temperature to another.

TOPICS/CONTENTS/NOTES

13. Thermal Expansion

(a) Solids

(i) definition and determination of linear, volume and area expansivities

(ii) effects and applications, e.g. expansion in building strips and railway lines

(vi) relationship between different expansivities

(b) Liquids

(i) volume expansivity

(ii) real and apparent expansivities

(iii) determination of volume expansivity

(iv) anomalous expansion of water

OBJECTIVES

Candidates should be able to:

i. determine linear and volume expansivities;

ii. assess the effects and applications of thermal expansivities

iii. determine the relationship between different expansivities.

iv. determine volume, apparent, and real expansivities of liquids;

v. analyse the anomalous expansion of water.

TOPICS/CONTENTS/NOTES

14.Gas Laws

(i) Boyle’s law (PV = constant)

(ii) Charle’s law ( V/P = constant)

(iii) Pressure law ( P/T = constant)

(iv) Absolute zero of temperature

(v) General gas equation ( PV /T= constant)

(vi) Ideal gas equation (Pv=n RT)

OBJECTIVES

Candidates should be able to:

i. interpret the gas laws;

ii. use expression of these laws to solve numerical problems.

TOPICS/CONTENTS/NOTES

15.Quantity of Heat

(i) heat as a form of energy

(ii) definition of heat capacity and specific heat capacity of solids and liquids

(iii) determination of heat capacity and specific heat capacity of substances by simple methods e.g method of mixtures and electrical method

OBJECTIVES

Candidates should be able to:

i. differentiate between heat capacity and specific heat capacity;

ii. determine heat capacity and specific heat capacity using simple methods;

iii. examine some numerical problems.

TOPICS/CONTENTS/NOTES

16.Change of State

(i) latent heat

(ii) specific latent heats of fusion and vaporization;

(iii) melting, evaporation and boiling

(iv) the influence of pressure and of dissolved substances on boiling and melting points.

(v) application in appliances

OBJECTIVES

Candidates should be able to:

i. differentiate between latent heat and specific latent heats of fusion and vaporization;

ii. differentiate between melting, evaporation and boiling;

iii. examine the effects of pressure and of dissolved substance on boiling and melting points.

TOPICS/CONTENTS/NOTES

17.Vapours

(i) unsaturated and saturated vapours

(ii) relationship between saturated vapour pressure (S.V.P) and boiling

(iii) determination of S.V.P by barometer tube method

(iv) formation of dew, mist, fog, and rain

(v) study of dew point, humidity and relative humidity

(vi) hygrometry; estimation of the humidity of the atmosphere using wet and dry bulb hydrometers.

OBJECTIVES

Candidates should be able to:

i. distinguish between saturated and unsaturated vapours;

ii. relate saturated vapour pressure to boiling point;

iii. determine S.V.P by barometer tube method

iv. differentiate between dew point, humidity and relative humidity;

v estimate the humidity of the atmosphere using wet and dry bulb hydrometers.

TOPICS/CONTENTS/NOTES

18.Structure of Matter and Kinetic Theory

(a) Molecular nature of matter

(i) atoms and molecules

(ii) molecular theory: explanation of Brownian motion, diffusion, surface tension, capillarity, adhesion, cohesion and angles of contact

(iii) examples and applications.

(b)Kinetic Theory

(i) assumptions of the kinetic theory

(ii) using the theory to explain the pressure exerted by gas, Boyle’s

OBJECTIVES

Candidates should be able to:

i. differentiate between atoms and molecules;

ii. use molecular theory to explain Brownian motion, diffusion, surface, tension, capillarity, adhesion, cohesion and angle of contact;

iii. examine the assumptions of kinetic theory;

interpret kinetic theory, the pressure exerted by gases Boyle’s law, Charles law melting, boiling vaporization, change in temperature, evaporation, etc

TOPICS/CONTENTS/NOTES

19. Heat Transfer

Condition, convetion and radiation as modes of heat transfer

Temperature gradient, thermal conductivity and heat flux

Effect of the nature of the surface on the energy radiated and absorbed by it.

The conductivites of common materials

The thrmos flask Land and sea breeze

OBJECTIVES

Candidates should be able to:

i. differentiate between conduction , convention and radiation as modes of heart transfer;

ii. determine temperature gradient, thermal conductivity and heat flux

iii. assess the effect of the nature of the surface on the energy radiated and absorbed by it;

iv. compare the conductivities of commonmaterials

v. relate the component part of the working of the thermo flask;

vi. different between land and sea breeze.

TOPICS/CONTENTS/NOTES

20. Waves

Production and propagation

Wave motion

Vibrating systems as source of waves

Waves as mode of energy transfer

distinction between particle motion and wave motion

relationship between frequency wavelength and wave velocity (v=f?)

phase difference

progressive wave equation e.g y=A sin (2 p(vt+x))/?

Classification

Types of waves; mechanical and electromagnetic waves

Longitudinal and transverse waves

Stationery and progressive waves

Examples of waves from springs, ropes, stretched strings and the ripple tank.

Chracteristics/Properties

Reflection, refractions, diffraction and plane Polarization

Superposition of waves e.g interference

OBJECTIVES

Candidate should be a ble to

i. Interpret wave motion

ii. Identify vibrating systems as sources of waves

iii. Use waves as a mode of energy transfer;

iv. Distinguish between particle motion and wave motion

v. Relate frequency and wave length to wave velocity

vi. Determine phase difference

vii. Use the progressive wave equation to compute basic wave parameters

viii. Differentiate between mechanical and electromagnetic waves.

ix. Differentiate between longitudinal and transverse waves.

x. Distinguish between stationary and progressive waves

xi. Indicate the example of waves generated from springs, ropes, stretched strings and the ripple tank;

xii. Differenctiate between reflection, refraction, diffraction and plane polarization of waves.

xiii. Analyse the principle of superposition of waves.

TOPICS/CONTENTS/NOTES

21. Propagation of sound waves

the necessity for a material medium

speed of sound in solids, liquids and air;

reflection of sound; echoes, reverberation and their applications

disadvantages of echoes and reverberations

OBJECTIVES

Candidate should be able to:

i. determine the need for a metrial medium in the propagation of sound waves

ii. compare the speed of sound in solids liquid and air

iii. relate the effects of temperature and pressure to the speed of sound in air

solve problem on echoes, reverberation

iv.compare the disadvantages and echoes

TOPICS/CONTENTS/NOTES

22. Characteristics of sound waves

(i) noise and musical notes

(ii) quality, pitch, intensity application and loudness and their application to musical instruments

(iii)simple treatment of overtones produced by vibrating strings and their coloumns [F=L/2Lv(T/M)]

acoustic examples of resonance

frequency of a note emitted by air columns in closed and open pipes in relation to their lengths.

TOPICS/CONTENTS/NOTES

23. Light Energy

Source of Light:

Natural and artificial source of light

Luminous and non-luminous objects

Propagation of light

Speed frequency and wavelength of light

(ii) Formation of shadows and eclipse

The pin-hole camera

OBJECTIVES

Candidate should be able to:

i. Compare the natural and artificial sources of light

ii.Differentiate between luminous and non luminous object

iii. Relate the speed, frequency and wavelength of light.

iv. Interpret the formation of shadows and eclipse

v. Solve problems using the principle of operation of a pin-hole camera

TOPICS/CONTENTS/NOTES

24. Reflection of light a Plane and curved surfaces

(i) laws of reflection

(ii) application of reflection of light

(iii) Formation of images by plane concave and convex mirrors and ray diagrams

(iv) use of the mirror formula

[1/f=(1/u)+(1/v)

(v) Linear magnification

OBEJCTIVES

Candidates should be able to

i. Interpret the laws of reflection

ii. Illustrate the formation of images by plane, concave and convex mirros:

iii. Apply the mirror formula to solve optical problems;

iv. Determine the linear magnification

v. Apply the laws of reflection of light to the working of periscope, kaleidoscope and the sextant.

TOPICS/CONTENTS/NOTES

25. Refraction of light through

(a)Plane and Curved Surface

(i) explanation of refraction in terms of velocity of light in the media

(ii) laws of refraction

(iii) definition of refraction index of a medium

(iv) determination of refraction index of glass and liquid using Snell’s law

(v) real and apparent depth and lateral displacement

(vI) critical angle and total internal reflection

(b) Glass Prism

Use of the minimum deviation formula

U=(sin((A+D)/2))/sin(A/2)

Type of lenses

Use of formula 1/f = (1/u) + (1/v)

magnification

OBJECTIVES

Candidates should be able to:

i. interpret the laws of refelction ;

ii. determine the refractive index of glass and liquid using Snell’s law;

iii.determine the refractive index using the principle of real and apparent depth

iv. determine the conditions necessary for total internal refelction;

v. examine the use of periscope, prism, binoculars, optical fibre.

vi.Apply the principles of total internal reflection to the formula of mirage

vii. Use of lens formula and ray diagrams to solve optical numerical problems

viii.Determine the magnification of an image

ix.Calculate the refractive index of a glass prism suing minimum deviation formula

TOPIC/CONTENT/NOTEs

26. Optical Instruments

(i) the principles of miscroscopes, telescopes, projections, cameras and the human eye (physiological details of the eye are not required)

(ii) power of a lens

(iii) Angular magnification

(iv) site defects and their corrections

OBJECTIVES

Candidates should be able to

i. apply the principles of operation of optical instruments to solve problems

ii.distinguish between the human eye and the cameras

iii. calculate the power of a lens

iv. determine the angular magnification of optical instruments

v. determine the near and far points

vi. detect sight defects and their corrections.

TOPICS/CONTENTS/NOTES

27 (a) dispersion of light and colours

Dispersion of white light by a triangular prism

Production of pure spectrum

Colour mixing by addition and subtraction

Colour of objects abd colour filters.

(b) electromagnetic spectrum

(i) description of sources and uses of various types of radiation

OBJECTIVES

Candidates should be able to

i. Relate the expression for gravitational force between two bodies

ii. Apply Newton’s laws of universal gravitation

iii. Identify primary colours and obtain secondary colour by mixing.

iv. Deduces why objects have colours

v. Analyse colours using colour filters

vi. Analayse the electromagnetic spectrum in relation to their wavelengths, sources, detection and uses.

TOPICS/CONTENTS/NOTES

28. Electrostatics

(i) existence of ositive and negative charges in matter

(ii) charging a body by friction, contact and induction

(iii) electroscope

(iv) Coulomb’s inverse square law electric field and potential

Electric field and potential

OBJECTIVES

Candidate should be able to:

i. Identify charges

ii. Examine uses of an electronscope

iii.apply coulomb’s square law of electrostatic to solve problems

iv. deduce expression for electric field and potential

v. identify electric field flux patterns of isolated and interacting charges

vi. analyze the distribution of charges on a conductor and how it is used I lightening conductors.

Conductor and how it is used in lightening conductors

TOPICS/CONTENTS/NOTES

29. Capacitors

Functions of capacitors

Parallel plate capacitors

Capacitance of a capacitors

The relationship between capacitance, area separation of plates and medium between the plates [C=3A/d]

Capacitors in series and parallel

Energy stored in a capacitor

OBJECTIVES

Candidate should be able to:

i. determine uses of capacitors

ii. analyse parallel plate capacitors

iii. determine the capacitance of a capacitor

iv. analyse the factors that affect the capacitance of a capacitor

v. solve problems involving the arrangement of capacitor

vi. determine the energy stored in capacitors

TOPICS/CONTENTS/NOTES

30. Electric Cells

(i) simple voltaic cell and its defects;

(ii) Daniel cell, Leclanche cell (wet and dry)

(iii) lead acid accumulator and Nickel Iron (Nife) Lithium Ion and Mercury cadmium

(iv) maintenance of cells and batteries (detail treatment of the chemistry of a cell is not required

(v) arrangement of cell

OBJECTIVES

Candidate should be able to:

i. identify the defects of the simple voltaic cell and their corrected;

ii. compare different types of cells including solar cell

iii. compare the advantages of lead-acid and Nikel iron accuulator

iv. citance of a capacitor

v. solve problems involving series and parallel combination of cells

TOPICS/CONTENTS/NOTES

31. Current Electricity

(i) electromagnetic force (emf), potential difference (p.d.), current, internal resistance of a cell and lost volt

(ii) Ohm’s law

(iii) measurement of resistance

(iv) meter bridge

(v) resistance in series and in parallel and their combination

the potentiometer method of measuring emf, current and internal resistance of a cell.

OBJECTIVES

Candidate should be able to:

i. differentiate between emf p.d current and internal resistance of a cell.

ii. apply ohm’s law to solve problems

iii. Use meter bridge to calculate resistance

iv. Compute effective total resistance of both parallel and series arrangement of resistors

v. determine the resistivity and the conductivity of a conductor

vi. measure emf current and internal resistance of a cell using the potentiometer.

32.Electrical Energy and Power

(i) concepts of electrical energy and power

(ii) commercial unit of electric energy and power

(iii) electric power transmission

(iv) heating effects of electric current.

OBJECTIVES

Candidates should be able to:

i. apply the expressions of electrical energy and power to solve problems;

ii. analyse how power is transmitted from the power station to the consumer;

iii. identify the heating effects, of current and its uses.

TOPICS/CONTENTS/NOTES

33.Magnets and Magnetic Fields

(i) natural and artificial magnets

(ii) magnetic properties of soft iron and steel

(iii) methods of making magnets and demagnetization

(iv) concept of magnetic field

(v) magnetic field of a permanent magnet

(vi) magnetic field round a straight current carrying conductor, circular wire and solenoid

(vii) properties of the earth’s magnetic Meld; north and south poles, magnetic meridian and angle of dip and declination

(viii) flux and flux density

(ix) variation of magnetic field intensity over the earth’s surface

(x) applications: earth’s magnetic field in navigation and mineral exploration.

OBJECTIVES

Candidates should be able to:

i. give examples of natural and artificial magnets

ii. differentiate between the magnetic properties of soft iron and steel;

iii. identify the various methods of making magnets and demagnetizing magnets;

iv. describe how to keep a magnet from losing its magnetism;

v. determine the flux pattern exhibited when two magnets are placed together pole to pole;

vi. determine the flux of a current carrying conductor, circular wire and solenoid including the polarity of the solenoid;

vii. determine the flux pattern of magnetic placed in the earth’s magnetic fields;

viii. identify the magnetic elements of the earth’s flux;

ix. determine the variation of earth’s magnetic field on the earth’s surface;

x. examine the applications of the earth’s magnetic field.

TOPICS/CONTENTS/NOTES

34.Force on a Current-Carrying Conductor in a Magnetic Field

quantitative treatment of force between two parallel current carrying conductors.

Force on a charge moving in a magnetic field

The dc motor

Electromagnets

Carbon microphone

Moving coil and moving iron instruments

Conversion of galvanometers to ammeters and voltmeter using shunts and multipliers

OBJECTIVES

Candidates should be able to:

i. determine the direction of force on a current carrying conductor using Fleming’s left-hand rule:

ii. interpret the attractive and repulsive forces between two parallel current carrying conductors using diagrams:

iii. determine the relationship between the force, magnetif field strength, velocity and the angle though which the charge enters the field

iv. interpret the working of the d. c. motor

v. analyse the principle of electromagnets give examples of its application

vi.compare moving iron and moving coil instruments

vii. converts a galvanometer into an ammeter or a voltmeter

TOPICS/CONTENTS/NOTES

35. (a) Electromagnetic Induction

Faraday’s law of electromagnetic induction

Factors affecting induced emf

Lenz’s law as an illustration of the principle of conservation of energy

A.c and d.c generators

Transformers

The induction coil

(b) Inductance

i. Explanation of inductance’

ii. Unit of inductor

iii. Energy stored ina n inductance

E= 1I2 L/2

iv. Application/uses of inductors

c.Eddy Current

i. reduction of eddy current

ii. application of eddy current

OBJECTIVES

Candidates should be able to:

i. interpret the laws of electromagnetic induction

ii. identify the factors affecting induced emf;

iii. recognize how Lenz’ law illustrates the principle of conservation of energy

iv. interpret the diagrammatic setup of A.C. generators;

v. indentify the types of transformer

vi. examine principles of operation of transformers

vii. assess the functions of an induction coil

viii. draw some conclusions from the principles of operation of an induction coil

ix. interpret the inductance of an inductor

x. recognize units of inductance of an inductor

xi. calculate the effective total inductance in series and parallel arrangement.

xii. deduce the expression for the energy stored in an inductor;

xiii. examine the applications of inductors

xiv. describe the method by which eddy current losses can be reduced.

xv. determine the ways by which eddy current can be used.

TOPICS/CONTENTS/NOTES

36. Simple A.C. Circuits

i. Explanation of a.c current and voltage

ii. Peak and r.m.s values

iii. A.C. sources connected to a resistor

iv. A.C. sources connected to a capacitor-capacitive reactance

v. A.C. sources connected to an inductor-inductive reactance

vi. Series R-L-C circuits

vii. Vector diagram

viii. Reactance and impedance of alternative quantities

ix. Effective voltage in an R-L-C circuits

x. Resonance and resonance frequency

[F0 =1/(2pvLC)

OBJECTIVES

Candidate should be able to

i. identify A.C. current of and d. d. voltage

ii. differentiate between the peak and r.m.s. values of a.c

iii. determine the phase difference between current and voltage

iv. nterpret series R-L-C circuit

v. analyse vector diagrams

vi. calculate the effective voltage reactance and impedance

vii. recognize the condition by which the circuit is at resonance

viii. determine the resonant frequency of R-L-C arrangement

ix. determine the instantaneous power, average power and the power factor in a circuit.

37. Conduction of Electricity through liquid

(a) liquids

(i) electrolytes and non electrolytes

(ii) concept of electrolysis

(iii) Faradays law of electroysis

(iv) application of electrolysis e.g electroplating, calibration of ammeter etc.

(b) gases

(i) discharges through gases(quantitative treatment only)

(ii) application of conduction of electricity through gases

OBJECTIVES

Candidate should be able to

i. distinguish between electrolytes and non-electrolytes

ii. analyse the processes of electrolytes

iii. apply faraday’s laws of electrolysis to solve problems

iv. analyse discharge through gases

v. determine some applications/uses of conduction of electricity through gases.

TOPIC/COMMENT/NOTES

38. Elementary Modern Physics

(i) models of the atom and their limitations

(ii) elementary structure of the atom

(iii) energy level and spectra

(iv) thermionic and photoelectric emissions

(v) einstein’s equation and stopping potential

(vi) applications of thermionic emissions and photoelectric effects

(vii) simple method of production of x-rays

(viii) properties and applications of alpha, beta and gamma rays.

(xiii) halflife and decay constant

(xiv) simple ideas of production energy by fission

(xv) binding energy, mass defect and Eintein’s Energy equation[?E=?Mc^2

(xvi) wave-particle paradox (duality of matter)

(xvii) electron diffraction

(xviii) the uncertainty principle

OBJECTIVES

Candidate should be able to

i. identify the models of the atom and write their limitation

ii. describe elementary structure of the atom

iii. differentiate between the energy levels and spectra of atom

iv. compare thermionic emission and photoelectric effects

v. apply Einstein’s equation to solve problems of photoelectric effect

vi. calculate the stopping potential

vii. relate some application of thermionic emission and photoelectric effects

viii. interpret the process involved in the production of x-rays

ix. identify come properties and application of x-rays

x. analyse elementary radioactivity.

xi. distinguish between stable and unstable nuclei

xii. Identify isotopes of an element

xiii. compare the properties of alpha beta and gamma rays

xiv. relate half life and decay constant of a radioactive element

xv. determine the binding energy, mass defect and Einsteins’s energy equation

xvi. analyse wave particle duality

xvii. Solve some numerical problems based on the uncertainty principle

TOPIC/COMMENT/NOTES

39. Introductory Electronics

(i) distinguish between metals semi conductors and insulators(elementary knowledge of band gap is required)

(ii) intrinsic and extrinsic semi conductor

(iii)uses of semiconductors and diodes in rectification and transistors in amplification.

(iv) n-type and p-type semi-conductors

(v) elementary knowledge of diode and transistors

(vi) use of semiconductors and diodes in rectification and transistors in amplification

OBJECTIVES

Candidates ’should be able to

i. differentiate between conducturs, semi conductors and insulators

ii. distinguish between intrinsic and extrinsic semiconductors

iii.distinguish between electron and hole carrier

iv. distinguish between n-type and p-type semi-conductor

vi. analyse diodes to rectification and transistor to amplification